Indexer - es8
ES8 Indexer
An Elasticsearch 8.x indexer implementation for Eino that implements the Indexer
interface. This enables seamless integration with Eino’s vector storage and retrieval system for enhanced semantic search capabilities.
Features
- Implements
github.com/cloudwego/eino/components/indexer.Indexer
- Easy integration with Eino’s indexer system
- Configurable Elasticsearch parameters
- Support for vector similarity search
- Bulk indexing operations
- Custom field mapping support
- Flexible document vectorization
Installation
go get github.com/cloudwego/eino-ext/components/indexer/es8@latest
Quick Start
Here’s a quick example of how to use the indexer, you could read components/indexer/es8/examples/indexer/add_documents.go for more details:
import (
"github.com/cloudwego/eino/components/embedding"
"github.com/cloudwego/eino/schema"
"github.com/elastic/go-elasticsearch/v8"
"github.com/cloudwego/eino-ext/components/indexer/es8"
)
const (
indexName = "eino_example"
fieldContent = "content"
fieldContentVector = "content_vector"
fieldExtraLocation = "location"
docExtraLocation = "location"
)
func main() {
ctx := context.Background()
// es supports multiple ways to connect
username := os.Getenv("ES_USERNAME")
password := os.Getenv("ES_PASSWORD")
httpCACertPath := os.Getenv("ES_HTTP_CA_CERT_PATH")
cert, err := os.ReadFile(httpCACertPath)
if err != nil {
log.Fatalf("read file failed, err=%v", err)
}
client, _ := elasticsearch.NewClient(elasticsearch.Config{
Addresses: []string{"https://localhost:9200"},
Username: username,
Password: password,
CACert: cert,
})
// create embedding component
emb := createYourEmbedding()
// load docs
docs := loadYourDocs()
// create es indexer component
indexer, _ := es8.NewIndexer(ctx, &es8.IndexerConfig{
Client: client,
Index: indexName,
BatchSize: 10,
DocumentToFields: func(ctx context.Context, doc *schema.Document) (field2Value map[string]es8.FieldValue, err error) {
return map[string]es8.FieldValue{
fieldContent: {
Value: doc.Content,
EmbedKey: fieldContentVector, // vectorize doc content and save vector to field "content_vector"
},
fieldExtraLocation: {
Value: doc.MetaData[docExtraLocation],
},
}, nil
},
Embedding: emb, // replace it with real embedding component
})
ids, _ := indexer.Store(ctx, docs)
fmt.Println(ids)
// Use with Eino's system
// ... configure and use with Eino
}
Configuration
The indexer can be configured using the IndexerConfig
struct:
type IndexerConfig struct {
Client *elasticsearch.Client // Required: Elasticsearch client instance
Index string // Required: Index name to store documents
BatchSize int // Optional: Max texts size for embedding (default: 5)
// Required: Function to map Document fields to Elasticsearch fields
DocumentToFields func(ctx context.Context, doc *schema.Document) (map[string]FieldValue, error)
// Optional: Required only if vectorization is needed
Embedding embedding.Embedder
}
// FieldValue defines how a field should be stored and vectorized
type FieldValue struct {
Value any // Original value to store
EmbedKey string // If set, Value will be vectorized and saved
Stringify func(val any) (string, error) // Optional: custom string conversion
}
For More Details
最后修改
April 28, 2025
: docs: update eino ext docs (#1314) (b49af87)